INTRAMOLECULAR CYCLIZATION

OF 2-THIAZOLYLAMIDES OF 2-ARYL-

2-HYDROXY-2-OXO-Z-2-BUTENOIC ACIDS

TO IMIDAZO[2,1-b]THIAZOLES

N. E. Gavrilova, V. V. Zalesov, and D. N. Kashin

Keywords: 4-aryl-2-hydroxy-4-oxo-*Z*-2-butenoic acids, imidazo[2,1-*b*]thiazoles, 2-thiazolylamides, intramolecular cyclization.

The action of a solution of diazomethane in ether on 2-thiazolylamides of 4-aryl-2-hydroxy-4-oxo-*Z*-2-butenoic acids **1a-c** leads to cyclization to give 5-(2-aryl-2-methoxyethenyl)-5-methoxy-6-oxo-5,6-dihydroimidazo[2,1-*b*]thiazoles **2a-c**.

Thin-layer chromatography indicated the presence of at least four compounds in the reaction mixture but **2a-c** are the major products obtained in 30-47% yield. The mechanism of this reaction requires special study.

Biomed Scientific Production Firm, 614089 Perm, Russia and Perm State University, 614600 Perm, Russia; e-mail: analisbio@permonline.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 853-855, June, 2002. Original article submitted February 29, 2000.

Similar cyclization to give derivatives of imidazo[1,2-a]pyridines was observed in the reaction of 2-pyridylamides of aroylpyruvic acids with diazoalkanes [1].

The IR spectra were taken on a UR-20 spectrometer as vaseline mulls. The ^{1}H NMR spectra were taken on a Bruker WP80 SY spectrometer at 80 MHz in DMSO- d_{6} with TMS as the internal standard. The UV spectra were taken on an SF-46 spectrophotometer in ethanol. The thin-layer chromatography was carried out on Silufol UV-254 plates using 10:9:1 ether–benzene–acetone as the eluent.

5-(2-Aryl-2-methoxyethenyl)-5-methoxy-6-oxo-5,6-dihydroimidazo[2,1-b]thiazoles (2a-c). A sample of diazomethane (0.04 mol) in diethyl ether (30 ml) was added to a solution of 2-thiazolylamide of 4-aryl-2-hydroxy-4-oxo-*Z*-2-butenoic acid (0.01 mol) in dioxane (25 ml) maintained at from -5 to 0°C. After 24 h, the solvent was evaporated at 20-25°C. The residue was recrystallized from 1:1 hexane–benzene.

Thiazole 2a was obtained in 30% yield; mp 159-161°C, R_f 0.51. IR spectrum, ν , cm⁻¹: 1645 (C=O). UV spectrum, λ max (log ε): 274 nm. ¹H NMR spectrum, δ , ppm: 3.57 (3H, s, CH₃O); 4.03 (3H, s, CH₃O); 6.78 (1H, s, CH=C); 7.50 (5H, 1H, C²H=C³), 1H, C³H=C², m, C₆H₅); 8.04 (2H, d, C₆H₅). Found, %: C 59.40; H 4.67; N 9.30; S 10.68. C₁₅H₁₄N₂O₃S. Calculated, %: C 59.60; H 4.64; N 9.27; S 10.60.

Thiazole 2b was obtained in 47% yield; mp 122-123°C, R_f 0.40. IR spectrum, ν , cm⁻¹: 1645 (C=O). UV spectrum, λ_{max} (log ε): 280 nm (4.65). ¹H NMR spectrum, δ , ppm: 3.57 (3H, s, CH₃O); 4.05 (3H, s, CH₃O); 6.78 (1H, s, CH=C); 7.28 (1H, s, C²H=C³); 7.58 (1H, s, C³H=C²); 8.08 (4H, d, C₆H₄). Found, %: C 53.60; H 3.77; N 8.38; Cl 10.80; S 9.68. C₁₅H₁₃ClN₂O₃S. Calculated, %: C 53.49; H 3.86; Cl 10.55; N 8.32; S 9.51.

Thiazole 2c was obtained in 40% yield; mp 108-110°C, R_f 0.52. IR spectrum, ν , cm⁻¹: 1668 (C=O). UV spectrum, λ_{max} (log ε): 208 nm (3.93). ¹H NMR spectrum, δ , ppm: 3.50 (3H, s, CH₃O); 4.03 (3H, s, CH₃O); 6.80 (1H, s, CH=C); 7.40 (1H, d, C²H=C³); 7.63 (1H, d, C³H=C²); 8.00 (4H, d, C₆H₄). Found, %: C 47.40; H 3.50; Br 20.85; N 7.38; S 8.67. $C_{15}H_{13}BrN_2O_3S$. Calculated, %: C47.26; H 3.41; Br 20.98; N 7.35; S 8.40.

REFERENCES

1. S. S. Kataev, Author's Abstract of Chemical Sciences Candidate's Dissertation, Perm (1999).